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   In this nugget we present basic ideas about the 
terrace-width distribution (TWD) of a vicinal 
surfaces and the physics it reveals.  This exposition is 
preparatory to subsequent nuggets with more 
advanced and recent findings. 
   The miscut angle φ of a vicinal surface fully 
determines the average spacing 〈λ〉 between steps: 〈λ〉 
∝ 1/tan(φ).  For a "perfect staircase", as illustrated in 
Fig. 1, each step-step spacing λ is 〈λ〉; in other words, 
the TWD is a delta function.  Since 〈λ〉 is the only 
characteristic length in the "downstairs" direction 
(called x in "Maryland notation"), it is convenient to 
adopt a dimensionless length s, where s ≡ λ/〈λ〉.  
Then P(s) = δ(s - 1).  Such a configuration, which 
corresponds to the limit of infinite step stiffness and 
infinite step-step repulsion, is unlikely to occur in 
nature. 
 

 
 

FIG. 1.  Illustration of a "perfect staircase", for which 
λ=〈λ〉 and P(s) = δ(s - 1). 
 
  

 
 

FIG. 2.  Illustration of a stepped surface formed by 
straight steps dropped randomly, yielding P(s) = 
exp(-s). 
 
A second simple possibility, illustrated in Fig. 2, is 
that the steps remain perfectly straight (like uncooked 
spaghetti, i.e. again the limit of infinite stiffness) but 
are placed randomly:  If we take the unit spacing in 
the x direction to be a, then the probability of finding 

a step at any position is a/〈λ〉, so that the probability 
of the step nearest a given step being n spacings away 
is (1-a/〈λ〉)n-1(a/〈λ〉).  In the continuum limit, this 
distribution takes the exponential form P(s) = exp(-s).  
There are several steps that are close together along 
with many that are separated by much more than 〈λ〉. 
   On most vicinal surfaces one finds the sorts of 
configurations depicted in Fig. 3, with substantial 
meandering of the steps.  That simulation was carried 
out for a terrace-step-kink model, in which the only 
thermal excitations are kinks on the step edges.  (This 
is an excellent approximation at relatively low 
temperatures, since the excitation energy of a terrace 
“defect” atom or vacancy is several times that of a 
kink.) 
 

 
 

FIG. 3.  Illustration of a stepped surface with 
meandering steps, specifically a Monte Carlo 
simulation of the terrace-step-kink model. 
 
    The resulting form of P(s) is depicted in Fig. 4, 
along with the TWD’s for the two preceding cases.  
The most striking difference, seen also in the 
configuration shown in Fig. 3, is the dramatic 
decrease in the probability of finding terraces with 
widths much smaller than 〈λ〉.  This decrease is 
attributed to an entropic or steric repulsion: Since 
steps cannot cross, a step that is near another step has 
fewer possibilities for meandering, and so contributes 
less to the free energy [1].  The resulting effective 
repulsion varies like λ-2, just like the typical Aλ-2 

elastic repulsion between steps [2].  (For the special 
case A = 0, depicted in Fig. 3, P(s) can be very well 
described by a sequence of analytic approximants 
[2].) 
   In order that the mean of the TWD be preserved, 
the number of very broad terraces, with λ at least a 
few times 〈λ〉, is also suppressed. 



 

 
 

FIG. 4. Sketch of the TWD in terms of the 
normalized terrace width s ≡ λ/〈λ〉 for the cases 
depicted in the preceding three figures. 

 
   Before closing, it is convenient for later nuggets in 
this series to introduce the idea of a step-step pair 
correlation function h(s), which is the probability of 
finding a step at s, conditional on there being a step at 
the origin.  It is generally easier to calculate this "2-
particle" correlation function than the "many-
particle" correlation function P(s), for which there 
can be no step between the origin and s.  Thus, for 
the perfect staircase of Fig. 1, h(s) is obviously Σnδ(s 
- n).  For the special case A = 0 of Fig. 3, h(s) is just  
1-[sin (πs)/πs]2 [3], the pair correlation function of 
free fermions in one dimension.  Later nuggets will 
discuss the source of this connection. 
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